ÁREA: MATEMATICA | GRADO: 8° | |
DOCENTE: ENAIDO MALDONADO POLO | CORREO: matematica. ceqa@gmail.com | |
FECHA: DEL 25 DE SEPTIEMBRE DEL 2025 | PERIODO: CUARTO | |
VALOR: LA AMISTAD | FRASE: “SOMOS CEQUEAMISTAS FORMADOS EN VALOR, LLEVAMOS EN LA SANGRE RESPETO-EDUCACION” |
FECHA: DEL 25 DE SEPTIEMBRE DEL 2025
GRADO: 8°
TEMA: EL CUBO DE UN BINOMIO
SUBTEMA: EL CUBO DE UN BINOMIO
LOGRO. Realiza operaciones utilizando productos notables
ACTIVIDAD PREVIA: ¿Que son productos notables?DEFINICION PAGINA 49 volumen 2EL CUBO DE UN BINOMIO
El binomio al cubo, una expresión algebraica que surge de la multiplicación de un binomio consigo mismo tres veces. En esta publicación, exploraremos qué es un binomio al cubo, cómo aplicar la regla o producto notable del binomio al cubo y cuál es su fórmula general. Además, nos sumergiremos en una variedad de ejercicios para afianzar nuestro entendimiento y habilidades en este tema.
¿Qué es un binomio al cubo?
Comencemos por definir qué es un binomio al cubo.
Un binomio es una expresión algebraica compuesta por dos términos, siendo los términos monomios de grado uno. Cuando elevamos un binomio al cubo, estamos multiplicando dicho binomio por sí mismo tres veces.
El binomio al cubo, una expresión algebraica que surge de la multiplicación de un binomio consigo mismo tres veces. En esta publicación, exploraremos qué es un binomio al cubo, cómo aplicar la regla o producto notable del binomio al cubo y cuál es su fórmula general. Además, nos sumergiremos en una variedad de ejercicios para afianzar nuestro entendimiento y habilidades en este tema.
¿Qué es un binomio al cubo?
Comencemos por definir qué es un binomio al cubo.
Un binomio es una expresión algebraica compuesta por dos términos, siendo los términos monomios de grado uno. Cuando elevamos un binomio al cubo, estamos multiplicando dicho binomio por sí mismo tres veces.
Por ejemplo, si tenemos el binomio
, al elevarlo al cubo obtenemos
, que es igual a
. Esto resulta en una expresión polinómica que consta de varios términos. En este producto notable se presentan dos casos de los que hablaremos en detalle más adelante:
- La suma al cubo
- Cubo de una diferencia
Por ejemplo, si tenemos el binomio , al elevarlo al cubo obtenemos
, que es igual a
. Esto resulta en una expresión polinómica que consta de varios términos. En este producto notable se presentan dos casos de los que hablaremos en detalle más adelante:
- La suma al cubo
- Cubo de una diferencia
Regla del binomio al cubo:
La regla del binomio al cubo establece el patrón que se debe seguir para expandir dicho producto notable, lo explicaré con el cuadrado de la suma y más adelante haré la aclaratoria del caso del cubo de una diferencia o resta. En el caso de la suma reza lo siguiente:
El cubo de una suma es igual al primer término elevado al cubo más el triple del cuadrado del primer término por el segundo más el triple del primer término por el segundo al cuadrado más el segundo término elevado al cubo.
Esta regla nos permite establecer las fórmulas para cada caso.
La regla del binomio al cubo establece el patrón que se debe seguir para expandir dicho producto notable, lo explicaré con el cuadrado de la suma y más adelante haré la aclaratoria del caso del cubo de una diferencia o resta. En el caso de la suma reza lo siguiente:
El cubo de una suma es igual al primer término elevado al cubo más el triple del cuadrado del primer término por el segundo más el triple del primer término por el segundo al cuadrado más el segundo término elevado al cubo.
Esta regla nos permite establecer las fórmulas para cada caso.
Fórmula del cubo de un binomio:
Primero te explicaré por separado los dos casos y luego a partir de allí estableceremos la fórmula general que funciona para ambos casos:
Primero te explicaré por separado los dos casos y luego a partir de allí estableceremos la fórmula general que funciona para ambos casos:
Binomio de la suma al cubo
El binomio de la suma al cubo es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.
El binomio de la suma al cubo es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.
Binomio de una diferencia al cubo
El binomio de una diferencia al cubo es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo.
El binomio de una diferencia al cubo es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo.
Ejercicios resueltos de binomio al cubo
Resolver los siguientes productos de binomio al cubo:
Ejercicio 1. 
Tenemos el caso de la suma donde el primer término es «x» y el segundo término es «2», aplicamos la fórmula para expandir el binomio:
Resolver los siguientes productos de binomio al cubo:
Ejercicio 1.
Tenemos el caso de la suma donde el primer término es «x» y el segundo término es «2», aplicamos la fórmula para expandir el binomio:

No hay comentarios.:
Publicar un comentario